Online Submission!

Open Journal Systems


Jonathan Leonardo, Julio Christian Young, Seng Hansun


The development of information technology provides information that is relevant, accurate, on time, and provides information that can be used to assist in making a decision. Pulmonary Tuberculosis disease is one of the fatal and most common diseases in the world. Using information technology, we could develop a system that can be used as a means for users to early detect Pulmonary Tuberculosis disease. In this study, to detect the Pulmonary Tuberculosis disease, Fuzzy Analytical Hierarchy Process (F-AHP) algorithm was used. The system built was divided into two stages, i.e., AHP and F-AHP. AHP algorithm was used to determine the value of data consistency from data that has been used, while F-AHP algorithm was used as a final determinant of the weight value of each criterion data used. Furthermore, the testing system was done by testing the method and testing the usefulness of the system. The method testing was done by comparing the value of the final weight between the system calculation and manual calculation, which produce the same value. The usefulness of the system then was evaluated by using the System Usability Scale (SUS) based on expert’s opinion, which produce a score of 82.5 and based on user’s opinion produced a score of 86.16. Both of the results can be included in the “Acceptable” category.


AHP; expert system; F-AHP; Pulmonary tuberculosis; SUS

Full Text:



Nugroho, R.A. 2011. Studi Kualitatif Faktor yang Melatarbelakangi Drop Out Pengobatan Tuberkulosis Paru. KEMAS: JurnalKesehatan Masyarakat, 7(1), 83-90.

Amin, M., Yanti, B., Harapan, H., and Mertaniasih, N.M. 2018. The role of Mycobacterium tuberculosis lineages on lung tissue damage and TNF-α level among tuberculosis patients, Indonesia. Clinical Epidemiology and Global Health, in press.

Harahap, I.W., Mutahar, R., and Yeni, Y. 2017. Correlation of Smoking Degree with Tuberculosis on Smokers in Indonesia (Analysis of IFLS 2014). JIKM, 8(3), 169-179.

Aini, N., Ramadiani, and Hatta, H.R. 2017. Sistem Pakar Pendiagnosa Penyakit Tuberkulosis. Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer, 12(1), 56-63.

Cik, I.J. and Jeksen, M. 2016. Sistem Pakar Diagnosa Penyakit Tuberkulosis (TBC) pada Rumah Sakit Umum Daerah (RSUD) Besemah Pagaralam. MATRIK, 18(3), 225-240.

Iskandar, F.M., Soebroto, A.A., and Regasari, R.2013. Sistem Pendukung Keputusan Seleksi Beasiswa PPA dan BBM menggunakan Metode Fuzzy AHP. SMATIKA Journal, 3(1), 1-11.

Norhikmah, Rumini, Henderi. 2013. Metode Fuzzy AHP dan AHP dalam Penerapan Sistem Pendukung Keputusan. In Proceedings of Seminar Nasional TeknologiInformasi dan Multimedia.Yogyakarta, 19 Januari 2013, 31-38.

Anggraeni, W., Kusumawardani, R.P., and Ardianto, R.D. 2014. Penerapan Fuzzy Analytical Hierarchy Process pada Sistem Penilaian Pegawai di Rumah Sakit Onkologi Surabaya. In Proceedings of Seminar Nasional Sistem Informasi Indonesia (SESINDO), 22 September 2014, 406-411.

Manurung, P. 2010. Sistem Pendukung Keputusan Seleksi Penerima Beasiswa dengan Metode AHP dan Topsis. Thesis. Medan: Universitas Sumatera Utara.

Kurniati, I., Hansun, S., and Putri, F.P. 2019. Employee Enrollment Decision Support System Using Analytical Hierarchy Process and Promethee Methods. ICSES Transactions on Data Science, Engineering and Technology, 2(1), 1-8.

Petra, Y. and Hansun, S. 2016. Rancang Bangun Sistem Rekomendasi Peminatan Fakultas Teknologi Informasi dan Komunikasi dengan Metode Analytical Hierarchy Process. Jurnal Buana Informatika, 7(2), 151-158.

Fajri, M., Lailil, M., and Rekyan, R. 2018. Implementasi Metode Fuzzy Analytic Hierarchy Process(F-AHP) dalam Penentuan Peminatan di MAN 2 Kota Serang. JPTIIK, 2(5), 2109-2117.

Mas’udin, I.2008. Penerapan Fuzzy Analytical Hierarchy Process untuk Pemilihan Alternatif Solusi Pengurangan Bullwhip Effect. Jurnal Teknik Industri, 9(2), 183-190.



  • There are currently no refbacks.

Copyright (c) 2019 COMPUSOFT: An International Journal of Advanced Computer Technology